Medical logo Pictures, Images and Photos Medical logo Pictures, Images and Photos Medical logo Pictures, Images and Photos Medical logo Pictures, Images and Photos Medical logo Pictures, Images and Photos Medical logo Pictures, Images and Photos

Δευτέρα 20 Σεπτεμβρίου 2010

Improper biological clocks tend to develop diabetes and obesity: Research

Biologists have found that a key protein that regulates the biological clocks of mammals also regulates glucose production in the liver and that altering the levels of this protein can improve the health of diabetic mice.
Their discovery, detailed in this week's advanced online publication of the journal Nature Medicine, provides an entirely new biochemical approach for scientists to develop treatments forobesity and type 2 diabetes. It also raises the interesting possibility that some of the rise in diabetes in the U.S. and other major industrialized countries could be a consequence of disturbances in sleep-wake cycles from our increasingly around-the-clock lifestyles.
"We know that mice that don't have good biological clocks tend to develop diabetesand obesity," said Steve Kay, Dean of the Division of Biological Sciences at UC San Diego and one of the lead authors of the research study. "And we know that mice that have developed diabetes and obesity tend not to have very good biological clocks. This reciprocal relationship between circadian rhythm and the maintenance of a constant supply of glucose in the body had been known for some time. But what we found that's so significant is that a particular biological clock protein, cryptochrome, is actually regulating how the hormone that regulates glucose production in the liver works in a very specific way."
"We used to think that our metabolism was regulated primarily by hormones that are released from the pancreas during fasting or feeding. This work shows that the biological clock determines how well these hormones work to regulate metabolism," says Marc Montminy, a professor in the Clayton Foundation Laboratories for Peptide Biology at the Salk Institute for Biological Studies. "The study may explain why shift workers, whose biological clocks are often out of kilter, also have a greater risk of developing obesity and insulin resistance."
Cryptochrome was first discovered by scientists as a key protein regulating the biological clocks of plants. It was later found to have the same function in fruit flies and mammals. But its role in regulating glucose production in the liver came as a complete surprise to the UCSD and Salk team, which included scientists from theGenomics Institute of the Novartis Research Foundation in San Diego, the University of Memphis and the Chinese Academy of Sciences in Shanghai.